

Обработка данных инженерного ОГТ в программе RadExPro – практическое руководство

(Редакция 11.12.2017 г.)

ООО «Деко-геофизика СК» Почтовый адрес: Научный парк МГУ, Ленинские горы 1-77 Москва 119992, Россия

Адрес для посетителей: ул. Ивана Бабушкина д. 3 к. 1, Москва, Россия Тел.: (+7 495) 532 76 36

> E-mail: <u>support@radexpro.ru</u> Сайт: **www.radexpro.ru**

Содержание

Введение	3
Ввод данных, присвоение геометрии и бинирование	4
Создание проекта в RadExPro	4
Загрузка исходных данных в проект	5
Присвоение геометрии и бинирование	8
Вычитание «левых» и «правых» ударов	15
Контроль присвоения геометрии с помощью связанных кросс-плотов	18
Анализ данных и предварительная обработка	22
Анализ волновой картины	22
Мъютинг	25
Скоростной анализ	33
Обработка, получение сейсмического разреза	40
Трансформация временного разреза в глубинный	49

Введение

В этом руководстве мы покажем, как в программе RadExPro начинающий пользователь может обработать данные инженерного МОВ ОГТ. Мы рассмотрим все стандартные этапы базовой обработки ОГТ от ввода геометрии до построения глубинного суммарного разреза – так называемый минимальный граф обработки. Мы предполагаем, что пользователь уже знаком с теорией метода ОГТ и принципиальной технологией обработки подобных данных.

Про теоретические основы метода ОГТ и процедур, которые мы используем в своем графе, Вы можете прочитать в следующих книгах:

Гурвич И.И., Боганик Г.Н. Сейсмическая разведка. М., Недра, 1980. Шерифф Р., Гелдарт Л. Сейсморазведка. В двух томах. М., Мир, 1987.

Хаттон Л., Уэрдингтон М., Мейкин Дж. Обработка сейсмических данных. Теория и практика. М., Мир, 1989.

Для того чтобы самостоятельно повторить все описанные в руководстве шаги, нужно скачать тестовый набор сейсмических данных с нашего сайта:

www.radexpro.com/wp-content/uploads/tutorialFiles/Reflection-example.zip

В архиве содержатся исходные данные для работы: фрагмент наземного сейсмического профиля, записанный в формате SEG-Y (файл *Reflection-example.sgy*) и содержащий в заголовках трасс номера пунктов приема и возбуждения.

Кроме того, вы можете загрузить готовый проект, полученный в результате выполнения всех шагов, описанных в руководстве:

www.radexpro.com/wp-content/uploads/tutorialFiles/Near-surface S-wave reflection.zip

В этом руководстве мы не стали рассматривать такие сложные темы как горизонтальный скоростной анализ, миграция, и др. Вы можете найти информацию об этих, и других, процедурах обработки и анализа данных в «Руководстве пользователя» к программе.

В качестве примера мы выбрали полевые сейсморазведочные наблюдения, которые проводились методом отраженных волн в модификации общей глубинной точки на поперечных SH- волнах. Данные для учебника были любезно предоставлены ООО «ГЕОСИГНАЛ».

Для возбуждения поперечных S-волн использовалась методика «правых» и «левых» ударов. При использовании данной методики, возбуждения производятся в двух направлениях, перпендикулярно линии профиля. В качестве источника возбуждения SH-волн использовалась кувалда, которой наносились удары по металлическому штырю, установленному под наклоном ~45° в грунт.

Прием сигнала производился с помощью сейсмической косы длиной 90 м. Использовались приёмники с горизонтальной осью чувствительностью с шагом 1 м. Источником была кувалда, которой начиная с выноса в 12 м наносились удары через каждые 4 метра. Такая расстановка называется смешанной, т.е. некий симбиоз фланговой (источник только на выносе и вся расстановка движется с определенным шагом) и центральная (источник в центре).

Ввод данных, присвоение геометрии и бинирование

Создание проекта в RadExPro

Обработка данных в программе RadExPro происходит в рамках обрабатывающих *проектов*. Проект представляет собой базу данных, содержащую исходные сейсмические данные, промежуточные и окончательные результаты обработки, а также все потоки обработки и их параметры, таблицы скоростей, пикировки горизонтов и другую вспомогательную информацию. Каждый проект и все принадлежащие ему файлы хранятся в отдельной папке на жестком диске. Перед тем как приступать к обработке сейсмических данных в RadExPro, данные нужно загрузить в проект.

Подробное пошаговое описание процедуры создания нового проекта и загрузки данных в проект можно найти в руководстве «Создание нового проекта *RadExPro* и загрузка данных». В диалоговом окне Project Manager создадим наш проект и назовем его «Near-surface S-wave reflection».

Project name	Date created	Date modified	
ogt	New database	ve reflection	Create new Select from disk Remove from list
Save list	Load list		

Выберем в списке проектов «Near-surface S-wave reflection» и нажмем кнопку ОК. Откроется рабочее окно проекта. Переименуем созданный автоматически первый обрабатывающий поток – назовем его «010 Data input». Вы можете так же захотеть изменить названия площади и линии.

RadExPro 2016.4 >>> Near-surface S-wave reflection	• W	G 8	12	
Database Options Tools Windows Help				
Processing Database Navigator				
Project tree X	Processing flow	×	All modules	×
» ≈ [₽		I II III	» *	
⊿ III Area			▷	Data I/O 🔶
🔺 🖃 Line			▷	Geometry/Headers
010 Data Input			▷	Interactive Tools
			▷	Signal Processing
			▷	Data Enhancement
			▷	Trace Editing 🗉
			▷	Deconvolution
			▷	Static Corrections
			▷	Velocity
			▷	Stacking/Ensembles
			▷	Migration
			▷	VSP
			▷	Qc
			▷	3C Processing
			▷	Modeling
	1	P		• • • • • •
Actions	Flow status			8 ×
Including 010 Data Input < Line < Area				
Rename flow Flow1 -> 010 Data Input at the line Line <				
Load flow Flow1 < Line < Area				
· · · · · · · · · · · · · · · · · · ·				

Загрузка исходных данных в проект

Начнем работу в первом потоке «010 Data input». Сформируем поток обработки, состоящий из модулей SEG-Y Input и Trace Output.

Это поток используется для загрузки данных в проект, он должен считать данные из файлов на диске и сохранить их в качестве объекта типа «набор данных» (dataset) в базу данных. Поскольку наши данные в формате SEG-Y, то для их чтения будем использовать модуль SEG-Y Input. Модуль автоматически определяет параметры файлов SEG-Y. Если какой-то параметр определен неверно, вы всегда можете откорректировать его вручную, указав верные значения.

SEG-Y Input	X
File(s) data \Reflection-example.sgy Image: Control of the second secon	Sample format Sample interval 1 □ Take format from file Number of traces 5220 □ I1 ○ I2 ○ I4 ○ R4 Number of traces 5220 □ Take byte order growth Trace length 1024 □ Take byte order from file Use trace weighting factor ○ Little-endian byte order Sorted by FFID:OFFSET Use trace ● Get all ○ Selection *:* • ● 3D Survey ○ 2D Survey Profile ID 1 □ Remap header values RECNO, 4L,, 181/ SOURCE, 4L,, 185/ ILINE_NO, 4L,, 189/ XLINE Recond, 4L, 181/ SOURCE, 4L, 185/ ILINE_NO, 4L, 189/ XLINE
From batch list OK	Cancel Load remap,,, Save remap,,,

После модуля SEG-Y Input добавим в поток модуль Trace Output. Этот модуль сохранит загруженные сейсмические трассы в базу данных. Объект, который будет содержать эти данные назовем 01_raw_data и разместим его на втором уровне базы данных в профиле Line (как показано на следующем рисунке).

Select dataset	×
Object(s): 01_raw_data	
Show shisets from a blowels	Name
	- Ivane Le
Area	
🧐 010 Data Input	
	4 III >
0	K Cancel

Для того чтобы проверить корректность загрузки данных, после модуля Trace Output добавим в поток модуль Screen Display.

Полученный поток должен выглядеть следующим образом:

Processing flow >> Area / Line / 010 Data Input	×	All modules	x
	🔳 🎞 LUG	» *	
SEG-Y Input <- Reflection-example.sgy		Data I/O	*
Trace Output -> 01_raw_data		Geometry/Headers	
Screen Display		▷ Interactive Tools	
		> Signal Processing	
		Data Enhancement	
		▷ Trace Editing	
		Deconvolution	
		> Static Corrections	_
		▷ Velocity	-
		Stacking/Ensembles	
		▶ Migration	
		VSP	
		QC	
		> 3C Processing	
		▶ Modeling	
		Data Manipulation	-
		Auto Picking	
		▶ Interpolation	
٩	4	la nantura	Ŧ

Для выполнения потока нажмите кнопку Run - в результате откроется окно Screen Display, отображающее вводимые данные, а сами данные будут прочитаны из файла на диске и записаны в базу данных. Окно Screen Display, которое появится на экране, приведено ниже (вид вашего окна будет зависеть от выбранных параметров в диалоге Screen Display).

😼 Display parameters	
rom t = 0.0 to 0.0 T t Scale 10 Number of traces 1000 X Scale 10 Rotate Ensemble boundaries	WT/VA display mode Normalizing factor Gain 0.3 C WT C None Gentre screen Bias(%) 0 VA C Individual Show every 1
Enable backward frame scrolling Ensembles to scroll Variable spacing Space to maximum ensemble width	Variable density display mode Grey C R/B C Custom Define C None C Individual C Indi C Individual C Individual C Individual C Indi C
Ensembles' gap 2 Muliple panels 0 ✓ Use excursion 2.0 traces	Data/velocity Display data Display velocity Set velocity Min.vel (m/s) 500.0
Axis Show headers Plot headers Header mark Picks/polygons settings	Max.vel (m/s) 1500.0

Настройки осей (диалог по кнопке Axis...):

Axis Parameters	
Time dt Values Lines primary lines	Traces C Different dx Values FFID C Interval 10.0 F
Secondary lines	CHAN CHAN 100.0
Font 15	Margins Left axis 20 mm Top axis 20 mm margin 20 mm

Присвоение геометрии и бинирование

Присвоение геометрии является одним из первых этапов обработки сейсмических данных. Под этим понимается заполнение значений всех необходимых заголовков (часто используют термин «паспорт трассы»), которые будут использоваться при дальнейшей обработке. После этого становится возможным проведение процедуры бинирования – присвоения сейсмическим трассам соответствующего номера общей средней точки.

Для проведения бинирования и дальнейшей обработки по методу ОГТ в заголовках сейсмических трасс должны быть заполнены следующие поля:

- координаты источника заголовок SOU_X;
- координаты приемника заголовок **REC_X**;
- номер источника заголовок **SOURCE**;
- расстояние источник-приемник заголовок **OFFSET**;
- координата срединной точки для каждой трассы заголовок CDP_X;

Далее, в результате бинирования заполняется номер точки ОГТ – заголовок **CDP**. После этого в заголовок **CDP_X** вместо координаты *срединной точки трассы* записывается координата *общей глубинной точки (ОГТ) всех трасс, попавших в бин*, т.е. координата центра бина.

В простом случае прямолинейного профиля с регулярной системой наблюдений (здесь мы рассматриваем именно такой случай) при использовании шага по ОГТ равного половине расстояния между приемниками, координаты срединных точек, попавших в каждый бин совпадают между собой и с координатой центра бина. Однако, надо понимать, что так будет происходить не всегда – например, вы можете увеличить размер бина в 2 раза, и тогда в него попадут трассы с двумя различными среднинными точками, а координата центра бина окажется между ними. Это можно делать для увеличения кратности по ОГТ, за счет пространственного разрешения. В случае наблюдений vменьшения влоль прямолинейных профилей, с использованием реальных GPS координат, срединные точки трасс совпадать не будут, в этом случае бинирование проводят отдельной процедурой – в RadExPro для этого есть специальный модуль Crooked Line 2D Binning, работа с которым выходит за рамки данного учебника.

Здесь, для расчета и присвоения геометрии наблюдений, а так же бинирования по ОГТ мы будем использовать модуль Near-Surface Geometry Input. Перед его применением необходимо проверить корректность заполнения заголовков сейсмических данных. Для этого откроем редактор таблицы заголовков (Geometry Spreadsheet) – перейдите во вкладку Database Navigator и дважды щелкните на имени исходного набор данных. Откроется редактор полей заголовков Geometry Spreadsheet -- как им пользоваться подробно описано в руководстве пользователя в разделе «Geometry Spreadsheet редактор таблицы геометрии (таблицы заголовков)».

В редакторе таблиц геометрии загрузим заголовки, с которыми мы будем работать – те, которые должны быть заполнены в поле, и те которые нам необходимо заполнить. Заголовки можно добавлять из списка заголовков справа перетаскиванием или по двойному щелчку мыши:

Tools										
TRACENO 82	FFID 943	CHAN 82	SOURCE	OFFSET 81.000000	SOU_X not assigned	REC_X not assigned	CDP not assigned	CDP_X not assigned	Assigned fields	only
83	943	83	1	82.000000	not assigned	not assigned	not assigned	not assigned	AAXFILI	
84	943	84	1	83.000000	not assigned	not assigned	not assigned	not assigned	ACQ_S_LINE	
85	943	85	1	84.000000	not assigned	not assigned	not assigned	not assigned	AOFFSET BATCH IND	ł
86	943	86	1	85.000000	not assigned	not assigned	not assigned	not assigned	BLOCKSHIFT1	
87	943	87	1	86.000000	not assigned	not assigned	not assigned	not assigned	BLOCKSHIFT2	
88	943	88	1	87.000000	not assigned	not assigned	not assigned	not assigned	CCP	
89	943	89	1	88.000000	not assigned	not assigned	not assigned	not assigned	CCP_X CCP_Y	
90	943	90	1	89.000000	not assigned	not assigned	not assigned	not assigned	CDP_Y	
1	944	1	1	0.000000	not assigned	not assigned	not assigned	not assigned	CHANNEL_SET	
2	944	2	1	1.000000	not assigned	not assigned	not assigned	not assigned	COR FLAG	
3	944	3	1	2.000000	not assigned	not assigned	not assigned	not assigned	DAY	
4	944	4	1	3.000000	not assigned	not assigned	not assigned	not assigned	DELAY	
5	944	5	1	4.000000	not assigned	not assigned	not assigned	not assigned	DEPTH	
6	944	6	1	5.000000	not assigned	not assigned	not assigned	not assigned	DSIND	
7	944	7	1	6.000000	not assigned	not assigned	not assigned	not assigned	dt	
8	944	8	1	7.000000	not assigned	not assigned	not assigned	not assigned	DW_PICK	

Как видно из таблицы выше, поля заголовков, соответствующие координатам источников, приемников, координаты точек ОГТ и их номера не заполнены (not assigned). Кроме того, поле TRACENO, в котором должен быть записан порядковый номер трассы, заполнено не по порядку.

Создадим новый поток «020 Geometry Input&check», в котором мы заполним заголовки трасс соответственно имеющейся геометрии наблюдений.

atabase <u>O</u> ptions <u>T</u> ools <u>W</u> indows <u>H</u> elp			
Processing Database Navigator			
Project tree	× Processing flow >> Area / Line / 020 Geome	ry input & check X All modules	
» ≈ 🖓		🥃 🎇 Шб 🛛 » 🔹	
🔺 🖽 Area		►	Data I/O
🔺 🖃 Line		▶	Geometry/Headers
010 Data Input		>	Interactive Tools
020 Geometry input & check		▶	- Signal Processing
o 020 Geometry input & check		▶	Data Enhancement
		Þ	Trace Editing
		Þ	
		Þ	- Static Corrections
		Þ	Velocity
		> S	stacking/Ensembles
		Þ	
		Þ	VSP
		▷	QC
		▷	
		▶	Modeling
		▷	Data Manipulation
		▶	Auto Picking
		Þ	
	4	4	
	Flow status		5
tions	× 🔵 010 Data Input 🔀		
oad flow 020 Geometry input & check < Line < Area	Near-surface S-wave reflection / Area	/ Line / 010 Data Input - started 4 января 2017 г. 18:10:12	
reate flow 020 Geometry input & check at the line Line < An	SEG-Y Input - Completed		
nioad now oto Data Input < Line < Area	Trace Output - Completed Screen Display - Completed		
Sau now oro Data input s tine s Area			

В этом потоке сначала прочитаем набор сейсмических данных с помощью модуля Trace Input. Выберем ранее созданный набор данных 01_raw_data, как показано на картинке, и загрузим все данные в том порядке, как они идут в наборе данных, указав в поле Selection «Get all». Нажмите ОК — модуль будет добавлен в поток.

Trace Input	×
Data Sets	Sort Fields
01_raw_data	Number of Ensemble Fields Image: Second se
Add Delete	Add Delete
From batch list	O Selection
Load headers only	
	C Select from file File
	C Database object Choose,
OK Cancel	

Для того чтобы модуль Near-Surface Geometry Input работал корректно, необходимо чтобы данные подавались на вход в порядке их следования по профилю, поскольку расчет координат производится последовательно для каждого пункта возбуждения. При этом заголовок TRACENO должен содержать корректные значения порядкового номера трассы.

Добавим в поток модуль Header Enumerator и заполним заголовок TRACENO в порядке возрастания с шагом 1.

Peader E	numerator	constity input	×
Header	TRACENO	▼ ○ Ensemble	Ontinuous numbering
Start value	1,00000	Reset start value at header changes	Sequentially
Step	1,00000	FFID V]
(OK Cancel		

Далее добавим в поток модуль Near-Surface Geometry Input. Этот модуль предназначен для присвоения геометрии полевым данным, полученным с помощью методов ОГТ, МПВ и анализа поверхностных волн (MASW).

Основной диалог модуля разбит на две вкладки — присвоение геометрии данных, полученных по методике ОГТ или MASW (Reflection/MASW) и данных, полученных по методике МПВ (Refraction). Каждому типу расстановки соответствует своя интерактивная картинка, которая наглядно показывает текущий параметр редактируемой вкладки (положение приемника, источника и т. д.).

В нашем случае приемная расстановка была зафиксирована вдоль профиля, а пункты возбуждения перемещались вдоль расстановки, поэтому выберем режим «Fixed mode». В этом случае необходимо задать следующие начальные параметры для расчета геометрии (все расстояния задаются в метрах):

First source position - координата первого пункта возбуждения; Source step - шаг между пунктами возбуждения; Number of channels - количество каналов приемной расстановки; First receiver position - координата первого канала; Receiver step - шаг между каналами; Bin size — размер бина (как правило, половина расстояния между приемниками); Number of shots at one point – количество возбуждений на одной точке профиля; Reassign FFID and CHAN headers - в случае, если поля заголовков, соответствующие номеру IIB (FFID) и каналу (CHAN) не были заполнены или были заполнены неверно, данная опция позволяет их пересчитать согласно заполненным параметрам о данных расстановки.

Правильные параметры, соответствующие геометрии наблюдений в нашем примере, показаны на рисунке ниже:

Нажмите ОК по завершению присвоения параметров.

Чтобы сохранить данные с присвоенной геометрией, используйте модуль Trace Output. Набор данных с геометрией мы назовем 02_geom_data и разместим его на втором уровне базы данных в профиль Line (как показано на следующем рисунке).

Select dataset	. data	×
Object(s):		
>> 🙁 🖾 Show objects from sublevels	Name	L¢
A tot Area	🗧 01_raw_data	Line < .
	🗧 02_geom_data	Line < .
 Ø 010 Data Input Ø 020 Geometry input & ch 		
	•	۱.
0	K Cancel	

Для контроля присвоения геометрии, в конец потока поставим модуль Screen Display. В итоге, получившийся поток должен выглядеть следующим образом:

Processing flow >> Area / Line / 020 Geometry input & check ×	All modules ×
▶ 🛛 • ≒ • 📄 🔛 🔟	» *
Trace Input <- 01_raw_data	Data I/O ^
Header Enumerator -> TRACENO	Geometry/Headers
Near-Surface Geometry Input	> Interactive Tools
Trace Output -> 02_geom_data	> Signal Processing
Screen Display	Data Enhancement
	▷ Trace Editing _≡
	Deconvolution
	Static Corrections
	▷ Velocity
	Stacking/Ensembles
	▶ Migration
	▷ VSP
	▶QC
	> 3C Processing
٠	Modeling

Запустите поток, нажав кнопку Run. В итоге будет получен набор данных с присвоенной геометрией. Для проверки корректности присвоения геометрии наблюдения в окне Screen Display воспользуемся инструментом «Approximate-Hyperbola (reflection)». Подберем параметры теоретического годографа отраженной волны (подробнее об использовании этого инструмента можно прочитать в разделе «Аппроксимация годографа отраженной волны» «Руководства пользователя»). На рисунке видно, что теоретическая гипербола, вершина которой совпадает с началом записи, вырождается в две прямые (прямая волна).

Таким способом можно увидеть незначительные ошибки в геометрии, даже сдвиг на один канал.

Кроме того, мы модем открыть набор данных с присвоенной геометрией (02_geom_data) в Geometry Spreadsheet и убедиться, что все заголовки присвоены верно:

TRACENO	FFID	CHAN	SOURCE	OFFSET	SOU_X	REC_X	CDP	CDP_X	
70	1	70	1	81.000000	-12.000000	69.000000	69	28.500000	
71	1	71	1	82.000000	-12.000000	70.000000	70	29.000000	
72	1	72	1	83.000000	-12.000000	71.000000	71	29.500000	
73	1	73	1	84.000000	-12.000000	72.000000	72	30.000000	
74	1	74	1	85.000000	-12.000000	73.000000	73	30.500000	
75	1	75	1	86.000000	-12.000000	74.000000	74	31.000000	
76	1	76	1	87.000000	-12.000000	75.000000	75	31.500000	
77	1	77	1	88.000000	-12.000000	76.000000	76	32.000000	
78	1	78	1	89.000000	-12.000000	77.000000	77	32.500000	
79	1	79	1	90.000000	-12.000000	78.000000	78	33.000000	
80	1	80	1	91.000000	-12.000000	79.000000	79	33.500000	
81	1	81	1	92.000000	-12.000000	80.000000	80	34.000000	
82	1	82	1	93.000000	-12.000000	81.000000	81	34.500000	
83	1	83	1	94.000000	-12.000000	82.000000	82	35.000000	
84	1	84	1	95.000000	-12.000000	83.000000	83	35.500000	
85	1	85	1	96.000000	-12.000000	84.000000	84	36.000000	
86	1	86	1	97.000000	-12.000000	85.000000	85	36.500000	
87	1	87	1	98.000000	-12.000000	86.000000	86	37.000000	
88	1	88	1	99.000000	-12.000000	87.000000	87	37.500000	
89	1	89	1	100.000000	-12.000000	88.000000	88	38.000000	
90	1	90	1	101.000000	-12.000000	89.000000	89	38.500000	
91	2	1	1	12.000000	-12.000000	0.000000	0	-6.000000	
92	2	2	1	13.000000	-12.000000	1.000000	1	-5.500000	
93	2	3	1	14.000000	-12.000000	2.000000	2	-5.000000	
94	2	4	1	15.000000	-12.000000	3.000000	3	-4.500000	
95	2	5	1	16.000000	-12.000000	4.000000	4	-4.000000	
96	2	6	1	17.000000	-12.000000	5.000000	5	-3.500000	
97	2	7	1	18.000000	-12.000000	6.000000	6	-3.000000	
98	2	8	1	19.000000	-12.000000	7.000000	7	-2.500000	
99	2	9	1	20.000000	-12.000000	8.000000	8	-2.000000	

Вычитание «левых» и «правых» ударов

При использовании методики встречных ударов регистрируются Р и SH волны. Р волна при этом является помехой, которую удаётся ослабить в результате вычитания «левых» и «правых» ударов. На полученных сейсмограммах ОПВ S-волны находятся в противофазе, что при последующем вычитании усиливает амплитуды зарегистрированных S-волн относительно амплитуды Р-волн, которые вычитаются синфазно.

Создадим поток «030 Subtraction», в котором будем вычитать «левые» и «правые» удары.

Сначала прочитаем набор сейсмических данных с помощью модуля Trace Input. Укажем сортировку SOURCE:CHAN:FFID, что позволит сформировать на входе модуля сейсмограммы в правильном порядке. При такой сортировке, на каждом пункте возбуждения для каждого канала, по потоку будут последовательно идти трассы от двух разных ударов: «левого» и «правого».

Trace Input	
Data Sets	Sort Fields
02_geom_data	SOURCE Image: Chan FFID Image: Chan Image: Chan Image: Chan Ima Image: Chan
Add Delete	Add Delete
Load headers only	
	Select from file
	C Database object Choose
OK Cancel	C Get all

Для вычитания ударов добавляем в поток модуль Trace Math и выбираем режим потрассного вычитания.

Trace Math Parameters	? ×
Mode: C Trace/Scalar	Trace/Trace
Operation: C Add Scalar C Scalar minus Sample C Multiply by Scalar C Divide Scalar by Sample	 Add Traces Subtract Traces Multiply Traces Divide Traces
C Reverse Trace C Scalar C Header	C Cross Correlation
Divide threshold: 0.01	Cancel

Чтобы сохранить результаты обработки, выпишем их модулем Trace Output в новый набор данных. Новый объект назовем 03_geom_data_s и разместим его в базе данных на уровне профиля Line (как показано на следующем рисунке).

Select dataset	um data	X			
Object(s): 03_geom_data_s					
>> 😞 🔲 Show objects from sublevels	Name	L¢			
	≑ 01_raw_data	Line < .			
	≑ 02_geom_data	Line < .			
🗐 010 Data Input	🖨 03_geom_data_s	Line < .			
Ø 020 Geometry input & ch					
030 Subtraction					
	< III	4			
OK Cancel					

Чтобы оценить полученный результат в конце потока разместим модуль Screen Display. В итоге, получившийся поток должен выглядеть следующим образом:

Processing flow >> Area / Line / 030 Subtraction	×	All modules	×
	22 LOG	» «	
Trace Input <- 02_geom_data		▷	Data I/O 📤
Trace Math		▷	Geometry/Headers
Trace Output -> 03_geom_data_s		▷	Interactive Tools
Screen Display		▷	Signal Processing
		▷	Data Enhancement
		▷	Trace Editing 🗉
		▷	Deconvolution
		▷	Static Corrections
		▷	Velocity
		▷	Stacking/Ensembles
		▷	Migration
		▷	VSP
		▷	QC
		▷	3C Processing
		▷	Modeling
5	P		man and the state of the state

На рисунке представлен результат процедуры потрассного вычитания. Две верхние сейсмограммы (до вычитания) имеют разные фазы. После вычитания получим одну сейсмограмму.

Контроль присвоения геометрии с помощью связанных кросс-плотов

Дополнительным средством контроля качества геометрии является построение так называемой диаграммы суммирования. Создайте новый поток «040 Geometry crossplots»:

RadExPro 2016.4 >>> Near-surface S-wave reflection Database Options Tools Windows Help	FARE N. A. C. Standbury S.	
Processing Database Navigator		
Project tree X	Processing flow >> Area / Line / 040 Geometry crossplots	All modules ×
» ≈ @	▶ 🛯 • ≒ • 📄 🔛 🔲	» «
▲ İ Area	CrossPlot* <- Area\Line\03_geom_data_s	Data I/O
🔺 🖃 Line		Geometry/Headers
010 Data Input		Interactive Tools
020 Geometry input & check		> Signal Processing
020 Subtraction		Data Enhancement
		▷ Trace Editing ≡
ter 040 Geometry crosspiols		Deconvolution
		> Static Corrections
		▷ Velocity
		Stacking/Ensembles
		▷ Migration
		▷ VSP
		▶ ——QC
		> 3C Processing
		▷ Modeling _
Actions X	Flow status	× '6
load flow 040 Geometry crossplots < Line < Area	9 Subtraction 🔝 📔 🛡 030 Subtraction 🖾 📔 🛡 040 Geometry crossplo	ots 🔟 🤝 020 Geometry input_check 🔤 030 Subtraction
Unload flow 040 Geometry crossplots < Line < Area	Near-surface S-wave reflection / Area / Line / 030 Subtraction -	started 8 января 2017 г. 0:13:25
Load flow 040 Geometry crossplots < Line < Area +	Trace Input - Input wait; Reading traces (0:13:25); 100% Trace Math - Input wait: 99%	
	Trace Output - Input wait; Writing traces (0:13:26); 100%	•

Добавьте модуль CrossPlot* в поток. Этот модуль из группы т.н. самостоятельных модулей и не нуждается в дополнительных модулях в потоке. Выберите набор данных с введенной геометрией и задайте путь, где будут храниться объекты, необходимые для работы модуля как показано на рисунке:

CrossPlot Parameters	X
Get trace headers from dataset	Get trace headers from ASCII file
• Area\Line\03_geom_data_s	· C
	Crossplot collection path
	Area \Line \Geometry
First Reference Header	Second Reference Header
TRACENO	
*	*
ОК	Cancel

Запустите поток на выполнение, нажав кнопку Run.

На диаграмме суммирования по оси X будем откладывать координаты источников, приёмников и точек ОГТ вдоль профиля, а по оси У – порядковый номер ПВ.

Начнём с построения первого кроссплота, на котором отобразим положение приёмников в пространстве для каждого ПВ. Для этого создайте новый кроссплот (New Crossplot) и укажите заголовки REC_X и FFID в качестве X и Y координат соответственно.

KrossPlot Manager -> Area1\Line	e 3\03_S_data_geom	×
REC_X vs. FFID	Show all	
	Hide all	
	New Crossplot	
	Edit Crossplot	
	Delete Crossplot	
	Canvas	
Save		

В результате на экране появится карта расположения приёмников в зависимости от номера ПВ. Обратите внимание, что согласно данной карте, позиции приёмников не менялись при смене номера ПВ – это полностью соответствует нашей схеме наблюдения, при которой приёмная линия не меняла своё положение в течение всей съёмки.

Теперь добавим на этот же кросс-плот схему координат ПВ (пункт меню окна кросс-плота View->Extra Headers). Укажите заголовки SOU_X и FFID в качестве X и У осей и нажмите Add – в результате график отобразится в списке, как показано на рисунке:

Extra headers			×
Exite network			
First header (X	Second header (Y	Point radius	Color
SOU_X 💌	FFID	3	
REC_X vs. FFID	(main headers)		Add
SOU_X vs. FFID			Remove
ОК		Cancel	

В результате на том же кроссплоте появится схема изменения ПВ по профилю. Источники идут с регулярным шагом и их перемещение соответствует запланированной смешанной схеме наблюдений.

Аналогичным образом добавьте на кросс-плот, координаты точек ОГТ (синие точки):

Несложно убедиться, что расположение точек ОГТ также полностью соответствует заданной геометрии.

Данный кроссплот также позволяет оценить кратность съёмки (количество синих точек по вертикали) – она меняется от 1 до 23 и соответствует расчётной кратности.

Анализ данных и предварительная обработка

Анализ волновой картины

Для того, чтобы корректно обработать исходные данные и выделить полезный сигнал, ввести кинематические поправки и просуммировать набор сейсмических данных, необходимо выделить полезные волны. Для этого создадим отдельный поток «050 Wavefield analysis», в котором изучим волновую картину.

Сперва загрузим данные с помощью модуля Trace Input. Выберем сортировку ОПВ (FFID:CHAN), чтобы выделить все типы волн.

Data Sets O3_geom_data_s O3_geom_data_s Image: Chara Sets	<u> </u>
O3_geom_data_s O3_geom_data_s Image: Chan in the second of the second	
Add Delete From batch list Image: Constraint of the selection Load headers only *:*	d
	_
C Select from file File C Database object Choose OK Cancel	

Далее в поток добавим модуль Screen Display, чтобы просмотреть данные и оценить уровень помех. Для этого оценим амплитудный спектр.

Для выделения полезного сигнала отфильтруем помехи с помощью модуля Bandpass Filter. Параметры выберем в соответствии с амплитудным спектром.

Bandpass filtering			×
Filter type	-Filter parameters		
 Simple bandpass filter Ormsby bandpass filter 	Low-cut ramp: 0%	4 (Hz)	
C Butterworth filter			
	High-cut ramp: 100%	75 (Hz)	
10 % of trace length		(12)	
	OK Cancel		

Поток будет выглядеть следующим образом:

Processing flow >> Area / Line / 050 Wavefield analysis	× All modules ×
	≫
Trace Input <- 03_geom_data_s	Data I/O
Bandpass Filtering	Geometry/Headers
Screen Display	Interactive Tools
	> Signal Processing
	Data Enhancement
	▷ Trace Editing =
	Deconvolution
	Static Corrections
	▷ ──── Velocity
	Stacking/Ensembles
	▶ — Migration –
	▶ VSP
	▶QC
	> 3C Processing
	Modeling
P P	

На сейсмограммах ОПВ можно выделить следующие волны: прямая (зеленая линия), отраженная (оранжевая линия), кратная (голубая линия), преломленная (красная линия), отраженная (дистальная часть гиперболы) (фиолетовая линия). Ниже отраженных волн находится область поверхностных волн. Для дальнейшей обработки необходимо подавить прямую, преломленную и поверхностную волны. Это можно сделать с помощью мьютинга.

Мъютинг

Для того чтобы можно было выполнить скоростной анализ, ввести кинематические поправки и просуммировать данные, необходимо подавить волны-помехи на сейсмограммах. Для этого можно использовать такую процедуру как мьютинг.

Создадим поток, где будем обнулять область сейсмограмм, содержащую помехи. Поток назовем «060 Muting surface waves».

RadExPro 2016.4 >>> Near-surface S-wave reflection Database Options Tools Windows Help	
Processing Database Navigator	
Project tree ×	Processing flow >> Area / Line / 060 Muting surface waves X All modules X
» ≈ Ę	▶ III - E - [] X2 L16 >>
🔺 💷 Area	Data I/O
🖌 🖃 Line	▷ Geometry/Headers
010 Data Input	▷ Interactive Tools
020 Geometry input & check	> Signal Processing
© 020 Subtraction	Data Enhancement
© 040 Consistence and the	▷ ────────────────────────────────────
100 Geometry crossplots	Deconvolution
050 Wavefield analysis	> Static Corrections
060 Muting surface waves	⊳ ———— Velocity
	> Stacking/Ensembles
	⊳ Migration
	>
	⊳OC
	> 3C Processing
	▶ Modeling
	Flow status
Actions	
Remove module Trace Input at position 1	
Load flow 060 Muting surface waves < Line < Area	
P1 Mars modules Chi MP1 Convinciules MR1 v2 Mos	uite annum the MDD - Theole modules: Chil: MDD vD - Cuit modules: Chiff±MB1 - Darte modules

На первом этапе загрузим данные при помощи модуля Trace Input OFFSET:CDP. В результате получим набор сейсмограмм равных удалений, на которых удобно пикировать горизонты для мьютинга.

Trace Input	
Data Sets	Sort Fields
03 geom_data_s	OFFSET CDP Number of Ensemble Fields I Note: Ensembles will be defined by this number of sort fields.
Add Delete	Add Delete
Load headers only	
	C Select from file File,
	C Database object Choose,
OK Cancel	C Get all

Поток будет выглядеть следующим образом (параметры Bandpass Filtering установим такие же, как и на предыдущем этапе обработки):

Processing flow >> Area / Line / 050 Wavefield analysis	All modules	×
	» «	
Trace Input <- 03_geom_data_s	▷	Data I/O 📤
Bandpass Filtering	□ ▷ G	eometry/Headers
Screen Display	▷	Interactive Tools
	▷	Signal Processing
		ata Enhancement
	▷	── Trace Editing 🗉
	▷	- Deconvolution
	▷	Static Corrections
	▷	Velocity
	Sta	acking/Ensembles
	▷	Migration
	▷	VSP
	▷	QC
	▷	
	▷	Modeling

Нажмем кнопку Run и в окне Screen Display отобразится полученная сейсмограмма. Построим пикировки для выполнения мьютинга. Для этого выберем в разделе основного меню Tools/Pick/New Pick и зададим название пикировки.

В разделе параметров пикировки выберем режим пикирования «Draw».

Необходимо нарисовать 2 границы (верхнюю и нижнюю), для того чтобы удалить поверхностные волны (красная и синяя пикировки на картинке), которые обычно идут веером. Так же нужна одна граница, чтобы удалить преломленные волны (оранжевая пикировка на картинке).

Перед выполнением мьютинга применим автоматическую регулировку амплитуд – это поможет нам при выделении полезных волн при выполнении скоростного анализа.

Amplitude Correct	ion
Time raised to port of the second	wer 2.00
Normalization	
None	
Onstant time	0.00 0 - trace center
Horizon	
Header	TRACENO
Maximum application	time 0.00 0 - trace end
Save AGC coeffic	250.00 MEAN ▼ CENTERED ▼ ients to dataset:
Trace equalizatio	n
MEAN	Image: gate start une (ms) Image: gate start une (ms) Image: gate start une (ms) 0.00
Time variant scal Example format: t1: Specify gain function	ing <1,t2-t3:k2,,tN:kN n along trace (t[ms])
	OK Cancel

Теперь дополним поток модулями для выполнения мьютинга – Trace Editing. Сначала удалим поверхностные волны при помощи режима Surgical muting. Этот режим обнуляет области трасс между двумя пикировками.

Trace Editing	x
Trace Editing parameters Horizon Second horizon Muting • Surgical muting • Top muting • • Bottom muting • • Muting in window 10 ms Taper window length 0 ms	
Editing C Zero padding C Inverse C Trace killing	
Save template Load template OK O	тмена

Сперва на вкладке Horizon выберем верхнюю пикировку.

Trace Editing
Trace Editing parameters Horizon Second horizon
Pick in database Select pick_top
C Trace header Browse
C Specify CDP 0-50:500,70:300
Save template Load template OK Отмена

Затем на вкладке Second Horizon выберем нижнюю пикировку.

Trace Editing
Trace Editing parameters Horizon Second horizon
Pick in database Select pick bot
O Trace header Browse
O Specify CDP
0-50:500,70:300
Save template Load template OK Oтмена

Добавим в поток еще один модуль Trace Editing для мьютинга преломленной волны.

Trace Editing	κ.
Trace Editing parameters Horizon Second horizon	
Muting	
Top muting O Surgical muting O Bottom muting	
C Muting in window 10 ms	
Taper window length 0 ms	
Editing	
C Zero padding	
C Inverse	
C Trace killing	
Save template Load template OK Отмена	

Выберем соответствующую пикировку.

Trace Editing
Trace Editing parameters Horizon Second horizon
Pick in database Select pick_top_top
C Trace header Browse
© Specify CDP 0-50:500,70:300
Save template Load template OK Отмена

Для того чтобы сохранить данные на диск, добавим в поток модуль Trace Output. Сохраним новый набор данных на уровне профиля под названием «04_s_data_geom_preproc».

Select dataset	um, data, a	X
Object(s): 04_s_data_geom_preproc		
>>	Name	Ld
▲ I Area	≑ 01_raw_data	Line < .
▲ 📃 Line	🗧 02_geom_data	Line < .
💿 010 Data Input	🗧 03_geom_data_s	Line < .
 020 Geometry input & ch 030 Subtraction 040 Geometry crossplots 050 Wavefield analysis 060 Muting surface waves 	< <u>III</u>	4
OK Cancel		

Поток будет выглядеть следующим образом:

Processing flow >> Area / Line / 060 Muting surface waves	All modules	×
	» «	
Trace Input <- 03_geom_data_s	▷	Data I/O 📤
Bandpass Filtering	▷	Geometry/Headers
Amplitude Correction	▷	Interactive Tools
Trace Editing <- pick_top	▷	Signal Processing
Trace Editing <- pick_top_top	▷	Data Enhancement
Trace Output -> 04_s_data_geom_preproc	▷	Trace Editing 🗉
Screen Display	▷	Deconvolution
	▷	Static Corrections
	▷	Velocity
	▷	Stacking/Ensembles
	▷	Migration
	▷	VSP
	▷	QC
	▷	3C Processing
4	▷	Modeling
		and the second s

Запустим поток кнопкой Run. В результате получим сейсмограмму, на которой в области регистрации преломленной и поверхностных волн, амплитуды будут нулевыми.

Скоростной анализ

Перед получением суммарного временного разреза в данные нужно ввести кинематические поправки. Поэтому следующим этапом необходимо провести вертикальный скоростной анализ. Для этого создадим поток «070 Velocity analysis». Подробнее о работе модуля можно узнать в разделе «Работа с модулем интерактивного анализа скоростей».

RadExPro 2016.4 >>> Near-surface S-wave reflection Database Options Tools Windows Help				
Processing Database Navigator				
Project tree X	Processing flow >> Area / Line / 070 V	elocity analysis ×	All modules	×
» ≈ Ę		🗐 🎞 LOG	» *	
🔺 🖽 Area			▶	Data I/O 🔺
🖌 🖃 Line			▷	Geometry/Headers
010 Data Input			▷	Interactive Tools
020 Geometry input & check			▷	Signal Processing
 020 Subtraction 			▷	Data Enhancement
() 040 Cogmetry grossplate			▷	Trace Editing 🗉
© 040 Geometry crosspiots			▷	Deconvolution
050 Wavefield analysis			▷	Static Corrections
9 060 Muting surface waves			▷	Velocity
070 Velocity analysis			▷	Stacking/Ensembles
			▷	Migration
			▷	VSP
			▷	QC
			▷	3C Processing
	4	b.	▷	Modeling
		· · · · · · · · · · · · · · · · · · ·		
Actions ×		Annu i C 🕅	• 000 M //m	E X
Load flow 070 Velocity analysis < Line < Area	Ubu Muting surface waves	Uou Muting surface waves	too muting surface waves	15.47.00
Create flow 070 Velocity analysis at the line Line < Area	mean-surface S-wave reflection	Area / Line / Vov Huting Surface	waves - started 11 января 201/ Г.	13:17:23
Unload flow 010 Data Input < Line < Area	Trace Input - Completed Bandpass Filtering - Completed Trace Editing - Completed			-
MB1 on a flow - Open the flow; MB2 - Context menu; MB1 and	drag - Copy subtree			

Для повышения отношения сигнал/шум и более уверенного выделения отраженных волн подготовим суперсейсмограммы – объединения нескольких соседних сейсмограмм ОГТ. Для этого добавим в поток модуль Super Gather. Зададим следующие параметры – начальная точка ОГТ = 0, шаг по точкам ОГТ = 50, число точек ОГТ в суперсейсмограмме = 15.

and Contrast				×
Super gather				
2D Gather	CDP Start	0	CDP	201
	CDP Step	15	CDP	50
C 3D Gather	Xline Start	0	Xline End	0
	Xline Step	0	Xline	0
🔲 Bin offsets	Off. Start	0	Off. End	0
	Off. Step	0	Off. Range	0
Dataset	04_S_dat	a_geom_prep	r	
Save ter	nplate Loa	ad template	ОК	Отмена

Посмотрим данные, полученные после выполнения модуля Super Gather с помощью модуля Screen Display. Поток будет иметь следующий вид:

Processing flow >> Area / Line / 070 Velocity analysis	×	All modules	×
	📃 🎞 🛛 LUG	» «	
Super Gather		▷	Data I/O 📤
Screen Display		▷	Geometry/Headers
		▷	Interactive Tools
		▷	Signal Processing
		▷	Data Enhancement
		▷	Trace Editing 🗉
		▷	Deconvolution
		▷	Static Corrections
		▷	Velocity
		▷	Stacking/Ensembles
		▷	Migration
		▷	VSP
		▷	QC
		▷	3C Processing
4	h	▷	Modeling
	,		

В результате получены суперсейсмограммы с заданным шагом:

Скоростной анализ выполняется с помощью модуля Interactive Velocity Analysis. Сначала во вкладке Output velocity создадим объект базы данных для сохранения пикировок скоростей.

Interactive Velocity Analysis	
PS/PP velocities Semblance Display	Gather Display STCK Display CVS Display
Super garrier Input velocity	Semblance
C Single velocity function	
O Use file:	
	Browse
O Database - picks vel	Browse
C Database - grid	Browse
Velocity domain Velo	city type
	RMS C Interval
Save template	Load template OK Отмена

Во вкладке Input velocity также выберем созданную пикировку скоростей.

Choose velocity picks				×
Object(s): vel				
>> 😞 🔲 Show objects from sublevels	Name	Location	Dimension	CDP points
🔺 🛄 Area	VEL vel	Line < Area	2	0
▲ 📃 Line				
🧔 010 Data Input				
020 Geometry input & ch				
030 Subtraction				
9 040 Geometry crossplots				
050 wavenero analysis 050 Muting surface waves				
Ø 000 Mang sandee waves				
				•
	ж	Cancel		

Interactive Velocity Analysis	×
PS/PP velocities Semblance Display Gather Display STCK Dis Super gather Input velocity Output velocity	play CVS Display Semblance
O Single velocity function	
C Use file:	
Browse	
Database - picks vel Browse	
C Database - grid Browse	
Velocity domain Velocity type O Depth O RMS O Interval	
Save template Load template OK	Отмена

Во вкладке Semblance скорректируем настройки отображения амплитудного спектра скоростей.

Super gather	Input velocity Output velocity	Semblance
- Semblance paran	neters	
Start velocity	50 End velocity 1000	
Velocity step	5 Time step 5	
-CVS Parameters		
Number of CVS	10	

Получившийся поток будет иметь следующий вид:

Processing flow >> Area / Line / 070 Velocity analysis	×	All modules	×
	📒 🎞 LUG	» «	
Super Gather		▷	Data I/O 📤
***Screen Display		▷	Geometry/Headers
Interactive Velocity Analysis		▷	Interactive Tools
		▷	Signal Processing
		▷	Data Enhancement
		▷	Trace Editing 🗉
		▷	Deconvolution
		▷	Static Corrections
		▷	Velocity
		▷	Stacking/Ensembles
		▷	Migration
		▷	VSP
		▷	QC
		▷	3C Processing
4	b.	▷	Modeling
	r		

При запуске потока, содержащего модуль Interactive Velocity Analysis, открывается окно, подобное показанному на рисунке ниже. Окно разделено на 5 частей (слева направо):

- Вертикальная шкала времени двойного пробега (в мс);
- Velocity окно спектра скоростей;
- Offset окно просмотра суперсейсмограммы;
- Фрагмент суммарного разреза -- окно суммотрасс, полученных с использованием текущей скоростной функции, отпикированной на спектре скоростей;
- CVS окно сумм с постоянными скоростями.

На панели спектра скоростей от пикируем скоростной закон. Чтобы добавить точку, щелкните левой кнопкой мыши (MB1) в нужном месте спектра скоростей. Добавленную точку можно перемещать, захватывая и удерживая ее правой кнопкой мыши (MB2). При этом переместится точка, ближайшая к положению курсора.

Удаление точки осуществляется двойным щелчком правой кнопкой мыши на точке, с одновременным удерживанием клавиши Ctrl (Ctrl+MB2 DblClick).

Первые суперсейсмограммы имеют недостаточную кратность, поэтому мы можем начатьпикировать со второй или третьей (там, где максимумы амплитудного спектра имеют четкие границы).

Пикируем максимумы, начиная с первого по времени (сверху). В процесс пикирования следует одновременно обращать внимание на максимумы энергии спектра скоростей, попадание теоретической гиперболы отраженной волны, соответствующей данной скорости, на наблюденные отраженные волны на суперсейсмограмме, а так же на получающийся при этом фрагмент суммарного разреза.

Чтобы проверить, насколько корректно мы выделили максимумы, необходимо нажать кнопку Apply NMO (расположена под главным меню на верхней панели). Это позволит оценить степень спрямления гипербол-отражений при текущем скоростном законе.

V = 316 T = 431 SCDP = 195, ILINE = 195, XLINE = 0

Важно соблюдать несколько правил при пикировке скоростей: скорости должны возрастать с глубиной. Понижение скоростей обычно связаны с кратными волнами, так же могут наблюдаться две линии максимумов – выше (от первичных отражений) и ниже (от кратных). Не стоит отмечать максимумы спектра, связанные с кратными волнами. Пикировка скоростей для соседних спектров не должны сильно различаться (для этого выбираем в меню пункт Velocity Field/Show Previous – отображать предыдущую пикировку). В конце работы со спектрами нужно нажать кнопку Save.

Обработка, получение сейсмического разреза

После выполнения скоростного анализа можем получить суммарный временной разрез. Создадим для этого поток «080 Stacking».

RadExPro 2016.4 >>> Near-surface S-wave reflection	and the second s		
Database Options Tools Windows Help			
Processing Database Navigator			
Project tree X	Processing flow >> Area / Line / 080 Stacking	× All modules ×	
× ≈ 밑		.06 » *	
▲ İ Area		Data I/O	
🖌 🗖 Line		Geometry/Headers	
Ø 010 Data Input		> Interactive Tools	
020 Geometry input & check		> Signal Processing	
@ 030 Subtraction		Data Enhancement	
010 Subruction		▶ Trace Editing ≡	
040 Geometry crosspicts		Deconvolution	
© 050 Wavelleid analysis		Static Corrections	
9 060 Muting surface waves		▷ Velocity	
10 Velocity analysis		Stacking/Ensembles	
080 Stacking		▶ Migration →	
		▶ VSP	
		▶QC	
		> 3C Processing	
	4	▶ ▶ Modeling ↓	
	Elow status		
Actions X	060 Muting surface waves 060 Muting surface waves	s 🛛 🕒 070 Velocity analysis 🖾 🔍 070 Velocity analysis 🔀 🔳 🕨	
Load flow 080 Stacking < Line < Area	Near-surface 5-wave reflection / Area / Line / 070 Velocity ar	nalysis - started 11 января 2017 г. 18:08:13	
Create flow 080 Stacking at the line Line < Area			
Unload flow 070 Velocity analysis < Line < Area	Interactive Velocity Analysis - Completed		
	[•	

С помощью модуля Trace Input загрузим в поток набор сейсмических данных. Выберем сортировку сейсмограмм ОГТ (CDP:OFFSET).

Trace Input	×
Data Sets 04_s_data_geom_preproc	Sort Fields CDP OFFSET Number of Ensemble Fields I Viscon Sector Secto
Add Delete	Add Delete
OK Cancel	C Select from file File C Database object Choose C Get all

Далее введем кинематические поправки с помощью модуля NMO/NMI:

NMO/NMI
NMO Velocity
© NMO Mute percent 30 © NMI
C Partial NMO
Header with desired non-zero offset
Use coordinate interpolation
Recalculate offsets, source and receiver positions
From coordinates From azimuth
Save template Load template OK Отмена

Выберем пикировку скоростей, полученную в результате скоростного анализа.

NMO/NMI	×
NMO Velocity	
C Single velocity function	
500-1000:2.5, 2000:2.7, 3000:2.9	
C Use file:	
	Browse
Database - picks vel	Browse
C Database - grid	Browse
Velocity domain Velocity type	Chinad
······································	
Save template Load template OK	Отмена

Для того чтобы просуммировать трассы каждой сейсмограммы ОГТ, добавим модуль Ensemble Stack.

Ensemble Stack	×			
_ Mode				
• Mean				
C Median				
C Alpha trimmed	1 I			
	0 %			
C Coherent star	sk			
	30 %			
Window	3			
Filter length	60			
✓ Treat zero as result of muting				
OK	Cancel			

В результате получим поток для суммирования данных по методу ОГТ:

Получим временной разрез:

На рисунке выше видно, что на временном разрезе остались волны-помехи с наклоном около 45 градусов, а также случайные шумы.

Для подавления случайных шумов и усиления когерентности отражений, добавим в поток модуль F-X Predictive Filtering. В потоке будем выполнять эту процедуру в 2 итерации, оба раза используем одинаковые параметры.

F-X Deconvolution		×
Settings		-
Filter Length	7	Number of
White Noise Level	1	%
Horizontal	14	Number of
Time	0	(ms)
Time Window	0	(ms)
Start Frequency	0	Hz
End Frequency	0	Hz
Divide by Ensembles	5	
✓ Mute Hard Zeroes		
Number of threads	4	
Notes		
Zero in Time Window bo	ox, Start and End F	requency boxes
means using the full ran	ge of values	
	ОК	Cancel

Поток сейчас выглядит во так:

▶ II = =
Trace Input <- 04_s_data_geom_preproc
NMO/NMI
Ensemble Stack
F-X Predictive Filtering
F-X Predictive Filtering
Screen Display

В результате выполнения этого потока получим следующий временной разрез:

Теперь подавим наклонные помехи с помощью двумерной F-К фильтрации. В модуле Screen Display построим двумерный амплитудный спектр:

Для подавления волн-помех с наклоном около 45 градусов в окне F-K analyze выделим полигон, соответствующий волнам помехам. Можно нажать кнопку предварительного просмотра (Preview) и посмотреть результат применения F-K фильтрации с таким полигоном к данным. При наличии двух, симметричных относительно вертикальной оси зон помех (как в нашем случае), достаточно будет задать один полигон. После того, как результат предварительного просмотра нас удовлетворит (помехи одного направления эффективно удалились), полигон нужно сохранить в базе данных при помощи меню окна двумерного спектра Pick/Save Polygon. Ниже показан результат предварительного просмотра результатов фильтрации:

Теперь, когда у нас есть полигон для фильтра, добавим в поток модуль F-K Filter и в окне настройки параметров выберем созданный полигон. Чтобы подавить волны помехи, имеющие симметричное направление, поставим галочку Mirror (будет создан второй полигон, симметричный первому относительно вертикальной вертикальной оси).

F-K Filter parameters		geoti propra	×
Area\polygon1			+ - IV Mirror
C Fan	,f1,f2/dip1,dip2,f1,f2 (m,	/s, Hz)	
Operation mode	Ensembles	Distance between traces (DX)	
 Reject Pass 	Use ensembles	Calculate from geometry headers X coordinate header OFFSET Y coordinate header OFFSET	- -
Taper window widt	th (%) 15	C Set Manual Manual DX (m)	_
		Cancel	

Результат двумерной фильтрации представлен ниже:

Финальную балансировку амплитуд (АРУ) и фильтрацию осуществим следующим образом:

Time raised to power 2.00 Exponential correction (dB/ms) 0.00 Normalization 0 Ormalization 0 - trace center Horizon 0 - trace center Header TRACENO Taximum application time 0.00 Operator length (ms) Type of AGC scalar Basis for scalar application Issue AGC coefficients to dataset:
Exponential correction (dB/ms) Normalization None Constant time Horizon Header TRACENO taximum application time 0.00 0 - trace end Automatic gain control Operator length (ms) Type of AGC scalar Basis for scalar application 150.00 MEAN CENTERED Trace equalization asis for scaling Time gate start time (ms) Time gate end time (ms) Time variant scaling xample format: t1:k1,t2-t3:k2,,tN:kN pecify gain function along trace (t[ms])
Normalization None Constant time 0.00 Horizon
None Constant time 0.00 0 - trace center Horizon Header TRACENO ✓ taximum application time 0.00 0 - trace end Automatic gain control Operator length (ms) Type of AGC scalar Basis for scalar application Isour AGC coefficients to dataset: Trace equalization asis for scaling Time gate start time (ms) Time gate end time (ms) MEAN ✓ 0.00 0.00 Time variant scaling xample format: t1:k1,t2-t3:k2,,tN:kN pecify gain function along trace (t[ms])
Constant time O.00 O - trace center Horizon Header TRACENO Automatic gain control Operator length (ms) Type of AGC scalar Basis for scalar application ISO.00 MEAN CENTERED Save AGC coefficients to dataset: Trace equalization asis for scaling Time gate start time (ms) Time gate end time (ms) MEAN O.00 O.00 Time variant scaling xample format: t1:k1,t2-t3:k2,,tN:kN pecify gain function along trace (t[ms])
Horizon Header TRACENO taximum application time 0.00 0 - trace end Automatic gain control Operator length (ms) Type of AGC scalar Basis for scalar application 150.00 MEAN CENTERED Save AGC coefficients to dataset: Trace equalization asis for scaling Time gate start time (ms) Time variant scaling Time variant scaling xample format: t1:k1,t2-t3:k2,,tN:kN pecify gain function along trace (t[ms])
Header TRACENO Maximum application time 0.00 0 - trace end Automatic gain control Operator length (ms) Type of AGC scalar Basis for scalar application Iso.00 MEAN CENTERED Save AGC coefficients to dataset:
Iaximum application time 0.00 0 - trace end Automatic gain control Operator length (ms) Type of AGC scalar Basis for scalar application Iso.00 MEAN CENTERED Save AGC coefficients to dataset: Trace equalization asis for scaling Time gate start time (ms) Time gate end time (ms) MEAN 0.00 0.00 Time variant scaling xample format: t1:k1,t2-t3:k2,,tN:kN pecify gain function along trace (t[ms])
Automatic gain control Operator length (ms) Type of AGC scalar Basis for scalar applicatio 150.00 MEAN CENTERED Save AGC coefficients to dataset: Trace equalization asis for scaling Time gate start time (ms) Time gate end time (ms) MEAN O 0.00 Time variant scaling xample format: t1:k1,t2-t3:k2,,tN:kN pecify gain function along trace (t[ms])
Trace equalization asis for scaling Time gate start time (ms) Time gate end time (ms) MEAN O.00 O.00 Time variant scaling xample format: t1:k1,t2-t3:k2,,tN:kN pecify gain function along trace (t[ms])
Trace equalization asis for scaling Time gate start time (ms) MEAN 0.00 Time variant scaling xample format: t1:k1,t2-t3:k2,,tN:kN pecify gain function along trace (t[ms])
OK Cancel
dpass filtering
ter type Filter parameters
Simple bandpass filter Low-cut ramp: 0% 5 (Hz)
Ormsby bandpass filte
Butterworth filter
Notch filter High-cut ramp: 100% 75 (Hz)
apering too
0 % of trace length (Hz)
Number of threads: 0

Результирующий временной разрез представлен на рисунке ниже:

Часто в инженерной сейсморазведке результирующие суммарные разрезы отображают в режиме отклонений/переменной плотности. Разрез в таком виде представлен ниже:

Запишем данные на второй уровень дерева проекта под названием 05_s_data_stack.

Select dataset	10. s. d	late grow proproc	×
Object(s): 05_s_data	a_stack		
»	how objects from sublevels	Name	L
		≑ 01_raw_data	Line < .
		🗧 02_geom_data	Line < .
Ø 010	Data Input	🗧 03_geom_data_s	Line < .
020	Geometry input & ch	🗧 04_s_data_geom_preproc	Line < .
© 030	Subtraction		
© 040 © 050	Wavefield analysis		
Ø 060	Muting surface waves		
Ø 070	Velocity analysis		
Ø 080	Stacking	<	•
OK Cancel			

Окончательная версия потока будет выглядеть следующим образом:

RadExPro 2017.2 >>> Near-surface S-wave reflection Database Options Tools Windows Help Processing Database Navigator × Processing flow >> Area / Line / 080 Stacking Project tree » ∝ @ 22 106 ▶ 🖽 • = = • Trace Input <- 04_s_data_geom_preproc 🛩 🖃 Line NMO/NMI 🌼 010 Data Input Ensemble Stack 020 Geometry input & check F-X Predictive Filtering F-X Predictive Filtering 030 Subtraction F-K Filter 040 Geometry crossplots Amplitude Correction 050 Wavefield analysis Bandpass Filtering 060 Muting surface waves Trace Output -> 05_s_data_stack 070 Velocity analysis ***Screen Display 080 Stacking 100 Time-Depth conversion

Трансформация временного разреза в глубинный

Завершающим этапом обработки является переход от временного масштаба в глубинный. Для пересчёта временного разреза в глубину воспользуемся скоростями, полученными ранее в результате скоростного анализа. Создадим поток «Time-Depth conversion».

В начале загрузим суммарный временной разрез, полученный в результате работы предыдущего потока (модуль Trace Input). Выберем сортировку ОГТ.

Trace Input	×
Data Sets	Sort Fields CDP Number of Ensemble Fields 1 Note: Ensembles will be defined by this number of sort fields.
Add Delete From batch list Load headers only Memory resort Buffer size (MB) 0	Add Delete Selection
OK Cancel	Select from file File Database object Choose Get all

В модуле Time/Depth Conversion выберем следующие параметры и скоростную модель vel:

Time/Depth Conversion
Time/Depth Conversion Velocity
○ Time->Depth ○ Depth->Time
Destination 200 Destination sample 1
Use coordinate-based intepolation
Output velocity traces
OK Cancel

Результат сохраним в Trace Output с названием 06_s_data_stack_depth.

	Name	Location
III Area	🖨 01_raw_data	Line < Area
✓ □ Line	🗧 02_geom_data	Line < Area
🌼 010 Data Input	🗧 03_geom_data_s	Line < Area
020 Geometry input & check	🗢 04_s_data_geom_preproc	Line < Area
 030 Subtraction 040 Geometry crossplots 		Line < Area
 050 Waveheld analysis 060 Muting surface waves 070 Velocity analysis 080 Stacking 100 Time-Depth conversion 		

Добавим модуль Screen Display и в результате получим следующий поток:

V Processing Database Navigator	V Descention flow to the Aster / Line / 100 Time Death services	Y
roject tree	Processing now >> Area / Line / 100 Time-Depth conversion	 = 22 00
🗸 🏧 Area	Trace Input <- 05_s_data_stack	
✓	Time/Depth Conversion	
🌼 010 Data Input	Trace Output -> 06_s_data_stack_depth	
020 Geometry input & check	Screen Display	
030 Subtraction		
040 Geometry crossplots		
050 Wavefield analysis		
060 Muting surface waves		
070 Velocity analysis		
080 Stacking		
100 Time-Depth conversion		

Для выполнения потока нажмите Run. В результате получим глубинный разрез, показанный на картинке ниже.

Полученный разрез можно выгрузить в формате Seg-Y (см. модуль SEG-Y Output), сохранить в виде изображения в нужном формате, либо распечатать в заданном разрешении (см. модуль Plotting) в зависимости от требования заказчика.